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To find all components T% = N, Ji =578 (£1)"a(k, g; m)J?  Another purpose is to inspect various kinds of operator equivi
(0 = g = k) of an irreducible tensor operator of rank k, a recursion  |ents as well as forms of their expression.
formula for the coefficients a(k, q; m) is derived. Various kinds of
operator equivalents and forms of their expression are examined.
Matrix elements of operator equivalents are expressed through the
coefficients a(k, g; m). A table for the coefficients a(k, gq; m) with
k = 2,4, and 6 is giVEI"I. © 1999 Academic Press
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GENERATION OF TENSOR OPERATORS T®(J)

The component$ Y, of an irreducible tensor operatéf (J)
of orderk (0 = g = k) satisfy Racah’s commutation rulg)(

elements. . ok
[3-, TSI =[(k+ a)(k— g+ DIV T [1]
The “£q” and “+(q” components are related to one anothel
INTRODUCTION by (5
y ()
Operator equivalents play a fundamental role in magnetic T(il%T = (—1)T®, 2]

resonance (EPR, ENDOR, etc.), especially in the construction
of a symmetry-adapted spin Hamiltonian followed by the c
culation of the energy levels of paramagnetic ions in crystal
Both Stevens opgrator equivaler)ts and Racah operator eqyl mponents). = J, = iJ, andJ, of an angular momentum
alents are extensively used for this purpose (see, &,d) &nd J (see, e.g.,12), we obtain
(3, 4), respectively, and references therein). Actually the latter LI
are the components (denoted hereTd$) of the irreducible
tensor operators) T™®(J) of an angular momenturd = (J,, " N
J,, J,) and the former are linear combinations of the operators T8 = Need? 2 alk, =a; m)J7, [3]
TY and TY (see, e.g., 8 and the summary therein of the m=0
different notations for operator equivalents).

Until now several methods for generating operator equivaleft§'€r€
have been known. The best known originated from Stevéns (

Starting from the “-k” componentT® = N,.,J% and using
. [1] along with the standard commutation relations for th

k—=q

and consists in replacing the space variableg andz, which N, = (—1)% 9N (k+qg)! vz 4]
appear in expressions for solid (spherical or tesseral) harmonics, ka kK(k—g)t(2k)! |
with the operators),, J,, andJ,, respectively. Conversion from _ K

Ni-q = (=1)*Nyg, (3]

solid harmonics to operator equivalents can also be carried out by
the “polarization” process8j. Another way is to apply Racah’s
(5) commutation rule (see Eq. [1] below). Direct use of the abO\%K
methods is complicated with an increase of orkiéy noncom-
mutation of the operator, J,, andJ,. In solving the problem of a(k, —q; m) = (=1)"a(k, q; m). (6]
generating operator equivalents of high order some general for-

mula or an elaborated algorithm might be very useful. The avaiquations [3], [5], and [6] result in

able formulas§—-11 and algorithmsg, 4) seem to be much too

« IS @ normalization factor (see the next paragraph), and

complicated for application in practice. One of the purposes of the k—q
present work is to give much simpler formulas for constructing T® =NJd® > (1) Ma(k, g; m)IT. [7]
operator equivalents as well as calculating their matrix elements. m=0
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All coefficientsa(k, g; m) are not equal to zero only i + TABLE 1

m = k; in particular whergq = k they area(k, k; 0) = 1. The  The Coefficients Appropriate to the Racah and Stevens Operator
“q — 1" coefficients are related to theg™ coefficients by a  Equivalents Defined in Eqgs. [7] and [23] with k = 2, 4, and 6
recursion formula:

k q Nio/ Nk m ak, q; m)/Fyq Fig
ak,g—1;m=(2g+m-1)ak, g m—1) 2 0 6122 0 -X 4
2 3
m(m + 1) 1 -3 0 1 2
+[q(q—1)—2]a(k. a; m) 1 >
2 1 0 1 1
k—g—m
m+n 4 0 702124 0 —3X(2 - X) 48
+ > (—1)“[( m )J(J+1) 2 5(5 — 6X)
n=1 4 35
1 —147%12 0 3(2- X) 24
_(m+n) (m+n 1 19 — 6X
m-—1 m-— 2 2 21
3 14
xa(k, q; m+n). (8] 2 74 0 9- X 8
1 14
In addition, " 2 !
3 —2772 0 3 4
1 2
N _ Nkvq [9] 4 1 0 1 1
kot [(k+ak—qg+ D] 6 0 2311440 0  —5X(12 — 8X + X2 2880
2 21(14— 25X + 5X?)
The coefficientsa(k, g; m) can be considered as g 105(;3_1 3X)
1 —227%720 0 5(12 — 8X + X?) 1440
[(k=a-m/2] A . 1 2(117 — 55X + 5X?)
ak, g;m = X [IJ+DTak, g;m,i), [10] 2 15(25 - 6X)
i=0 3 60(6 — X)
4 165
o . . 5 66
Whezre the fourth mdex.ls an mteggr power of the eigenvalue 5 551272 0 120— 26X + X° 360
of J%, the maximum foii being the integer part of the number 1 6(47 — 6X)
(k — g — m)/2. The algorithm, given in Eq. [8], is easily 2 3(91 - 6X)
programmed on a computer with the result that all components 3 132
) . 4 33
(see Eq. [7]) of the tensor operaf®f’(J) of order as high as, o
) . - 3 —557%12 0 3(40— 3X) 60
e.g., 50 can be found. As an illustration, all coefficients except 1 179 — 6X
for N, appropriate to the most common magnetic resonance 2 99
orders,k = 2, 4, and 6, are given in Table 1. The specific 3 22
values ofN,, are determined by a concrete kind of tensor 4 66 112 0 50 - X 12
operator (see below). ; ‘1“1‘
5 -3 0 5 6
KINDS OF OPERATOR EQUIVALENTS 1 2
6 1 0 1 1

The operatord ¥, defined in Eq. [7] are the direct equiva-
lents of solid harmonics

1/2

Note. X= J(J + 1); F4 are multiplying factors.

[11] The operator equivalents with such normalization are traditior
ally expressed (see, e.4, (L3—15) through anti-commutators
{39, P93} = JIPY Y + PX9Y e,

*q

where YY), are the usual spherical harmonics a@d), are
Racah’s harmonicsh}, if we put in Eq. [4] TW = (£1) N, {2, P9(J))}, [13]

(-1)'{(2K)1]¥2

where we introduce the designatiBt (J,) for a polynomial
N = 25

[12] of orderk — g in the variablel, having order«k — g,k — q —
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2, ...= 0. We found that each pair of those operators can alsoEq. [4], we obtain from Eq. [7] the operator equivalents (se
be expressed as the sum/difference of another anti-commutd®ef. (3)) commonly used in constructing a generalized spil
{39, P*9J)Y # {39, P“9J,)} and commutator ¢, Hamiltonian (L6).

P 9(J)] = JIPK et — platigg, In the case

T = (£1)Ng({I2, PPF9(3} = [I8, PFa1(3)]), _ (D" [<2““(2" - ")’} [18]

14) K= TR 20+ k+ D!

we get Racah’sH) unit tensor operators, for which the reducec

where in a polynomial of orddt — q — 1 the variable], has matrix elements are

ordersk — q— 1,k — q — 3,...> 0. In addition, forq #
0 the alternative form is QITOII) = 1. [19]

TE = (£1)9" Ny [ I4, P94 3)T; [15] This result (cf. Eq. [29] below) follows from the Wigner—
Eckart theorem17) (see Eq. [28]). The normalization, which
here orders ofl, arek — q + 1,k — q — 1, ...> 0. Al is similar to Eq. [18] but includes an additional factork(2

1/2 B
these forms, Egs. [13]—[15], can be reduced to Eq. [7] with e+ 9ives 8)
help of the relation

QIT®Iy = (2k + 1) V2 [20]
P D The normalizationN,, = 1 (12) and others (see, e.g., the
JPJL =393, = q)P =39 > (*1) ’"( m)q’“J ?"™. [16] normalization of the operatof&? in Ref. (19)) are also used.
m=0 The operator equivalents to the cosine and sine tesse
harmonics are linear combinations of the appropriate tens
For example, for the componefit®) Egs. [13]-[15] give operators of a spherical type, viz.,
c
T®) = *NgFgq{J-, 3315 — (30X — 15)J2 0d(c) = % [TE + TR,
+ (5X2— 10X + 12)J,}, [13]
T ()t
- <+{J 2308 — (30X — 7833 Oi(s) = o [T" = T I, [21]
+1 6,1' 6,1\ — 9 z z
35 wherec,, is a multiplying coefficient. In particular, the conven-
+ (5)(2 - X + 12) JZ} tional Stevens operator equivalents are obtained with the use
+1|J., 3004 - Ex—30 J? [14'] Crq = o, [22]
+ z 2 z ’ ' Nk,qu,q
T® = NgiFgJ., —113% + (15X — 35)J2 whereF, , is the largest common factor for the natural number
— (5X? — 25X + 14)32], [15] a(k, g; m, i) (see Eq. [10]) with giverk andq (see the values

of Fy,fork = 2, 4, and 6 in Table 1)¢ = 1 for all g if k is
an odd integer but ik is even, therw = 1 or e = 1 for even
and oddq, respectively. Thus, for the conventional Steven:
operator equivalents from Egs. [2], [7], [21], and [22] we gef

whereFg, = 1440 andX = J(J + 1). But all these are
reduced to the following (cf. Table 1):

T = Ng1FeJ-[£66J% + 16514 + 60(—X + 6)J2 W K
4e) = O = -
+ 15(—6X + 25)J2 + 2(5X2 — 55X + 117)J, Oilc) = O« 2F g go ak, g; m)
+5(X2— 8X + 12)]. (7] W [J9 + (—1)<5-m)a]m,
Introducing a Ko
Of(s) = 5=— > a(k, q; m)
2iF 4 o
(-1 "

Nk = w2 [17] X[JI% = (=Dkama]ap.  [23]
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The above-stated double valdecan apparently be explainedtables (see Ref.2Q)) of matrix elements of Racah operator
as follows. When constructing the operat@g(c) andOJ(s) equivalents with normalization from Eq. [12] can be easily
with Eq. [21] the tensor operatofEY, are usually used in a reproduced fok = 2, 4, and 6. For the practically important
form similar to Eq. [13]. Then for the Stevens operators witBtevens operator equivalents, Eqgs. [23], we analogously obte
evenk the common factor§ i, = Fy./a appear in polyno-

mials P*"9(J,), i.e., a

o
’ q =N
(3, M'[O(e)[3, M) 2Fa o

1
Of = 55— {39 + 39, PX9(J))}, [24]
2Fiq

— 1/2
y {8MV,M+q[(J M)L(J+ M + q)!]

each factorF,, being just the same that would appear in (J+MIJ-M-q)!

constructing the solid harmonics (see Eq. [11]). In the case of (J+MI(J =M+ q)] Y2
odd k the multiplying factorsF;, = F,, are conventionally + Swm-q(—1) kqm[(J “MI(JEM = q)& }
chosen as the common ones for the corresponding polynomials ' '

in the solid harmonics rather than for the polynomials X M™Ma(k, q; m) [27]

P 9(J,). As a consequence of this trick fractional numbers

occur in the appropriate anti-commutators (see, e.g., the listspld a similar formula fog(s), in which an additional mul-
Racah and Stevens operator equivalents in R&#.13 and tjplier (—i) is to appear and the sign in front of-()* 9™ is

(2, 2D, respectively; the list in Ref2(1), however, is found to tg he changed into the opposite. With Eq. [27] some misprint
contain a number of errors). By the way, following Refl), in the available tables of matrix elements of Stevens operat
we note that terms of order lower thann Eq. [7] (bearing in equivalents (see, e.g., the Russian edition of boakg)j can
mind orders in Eq. [10]) are to be ignored when performing thgyme to light.

reciprocal conversion from the operator equivalents to the solidaccording to the Wigner—Eckart theorerhi7j, matrix ele-
harmonics. From the above it can be concluded that in thents of irreducible tensor operatdf&’(J) are

construction of the Hermitian operatd®g/(c) andO{(s) other
values of the coefficients, , in Eq. [21] would be desirable in

®
order to exclude any dependence on the form of expression of (3, M = q[T%[3, M)
the tensor operatofEY). The valuec,, = 1 seems to be quite . J kK J y
suitable. = e )T 2

MATRIX ELEMENTS OF OPERATOR EQUIVALENTS Puttingq = k and comparing the right-hand sides in Egs. [26

Knowing that and [28], we get

(23 + k + 1)!

12
JZ|J, M) = |V||J, M) JIT®)I) = (_1)ka'kk!|:(2k)!(2‘]—k)!:| . [29]

and
The special cases of Eq. [29] appropriate to the normalizatior

in Egs. [12], [17], and [18] have been considered in Refs

M) =[IF= M =M+ DI M £ 1), [25] (14,15, (3), and (1), respectively.

we get from Eq. [7] CONCLUSIONS

The new formulas given in this work, viz., Egs. [4], [7]-[10],
[23], [26], and [27], constitute the closed and easily reproduce
algorithm of constructing quickly both the Racah and the

I, M= q|T(ik21|J, M) = Nyq

(JFMI(JI=M+q)]Y2
(J+=MIIFM-— q)!]

k—q
—mpg m . Stevens operator equivalen®¥, andO{(c), Of(s)) with any
X 1) "MMa(k, g; U )
go (=1) atk, g; m) (reasonably high) integer ordkrand any normalization, such

asin Egs. [12], [17], [18], or any other, as well as of calculating
[26]  their matrix elements (within any = constant) without any
reference to the special tables. The available tables quite oft
with the restrictions 0= g = k= 2Jand—J = M = g = contain annoying misprints and our formulas could be useful i
J. For example, using Eqgs. [4] and [26] as well as Table tevealing these.



10.

11

GENERATION OF OPERATOR EQUIVALENTS

REFERENCES

. A. Abragam and B. Bleaney, “Electron Paramagnetic Resonance of
Transition lons,” Clarendon, Oxford (1970).

. S. A. Al'tshuler and B. M. Kozyrev, “Electron Paramagnetic Reso-
nance in Compounds of Transition Elements,” Wiley, New York
(1974).

. H. A. Buckmaster, R. Chatterjee, and Y. H. Shing, The application
of tensor operators in the analysis of EPR and ENDOR spectra,
Phys. Status Solidi A 13, 9-50 (1972).

. S. A. Marshall, T. Marshall, and H. A. Buckmaster, Angular momen-
tum operator equivalents, Magn. Reson. Rev. 14, 81-98 (1988).

. G. Racah, Theory of complex spectra. Il, Phys. Rev. 62, 438-462
(1942).

. C. Rudowicz, Transformation relations for the conventional Oy and
normalised O, Stevens operator equivalents with k = 1 to 6 and
—k = q =k, J. Phys. C 18, 1415-1430 (1985).

. K. W. H. Stevens, Matrix elements and operator equivalents con-
nected with the magnetic properties of rare earth ions, Proc. Phys.
Soc. A 65, 209-215 (1952).

. M. E. Rose, “Elementary Theory of Angular Momentum,” Wiley,
New York (1957).

. J. M. Caola, Operator equivalents in closed form, Phys. Lett. A 47,

357-358 (1974).

A. K. Bose, Operator equivalents without the use of Clebsch-

Gordan coefficients, Phys. Lett. A 50, 425-426 (1975).

. G. Grenet and M. Kibler, On the operator equivalents, Phys. Lett. A

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

145

68, 147-150 (1978); M. Kibler and G. Grenet, On the SU, unit
tensor, J. Math. Phys. 21, 422-439 (1980).

J. P. Elliott and P. G. Dawber, “Symmetry in Physics,” Macmillan,
London (1979).

H. A. Buckmaster, Tables of matrix elements for the operators O, ",
1 08, 02°, Canad. J. Phys. 40, 1670-1677 (1962).

D. Smith and J. H. M. Thornley, The use of ‘operator equivalents,’
Proc. Phys. Soc. 89, 779-781 (1966).

P.-A. Lindgard and O. Danielsen, Bose-operator expansions of
tensor operators in the theory of magnetism, J. Phys. C 7, 1523-
1535 (1974).

G. F. Koster and H. Statz, Method of treating Zeeman splittings of
paramagnetic ions in crystalline fields, Phys. Rev. 113, 445-454
(1959).

A. R. Edmonds, “Angular Momentum in Quantum Mechanics,”
Princeton Univ. Press, Princeton, NJ (1957).

E. Ambler, J. C. Eisenstein, and J. F. Schooley, Traces of products
of angular momentum matrices, J. Math. Phys. 3, 118-130 (1962).

C. Kikuchi and L. M. Matarrese, Paramagnetic-resonance absorp-
tion of ions with spin 3: Mn** in calcite, J. Chem. Phys. 33, 601-606
(1960).

R. J. Birgeneau, Tables of matrix elements of Racah operator
equivalents, Can. J. Phys. 45, 3761-3771 (1967).

S. K. Misra, C. P. Poole, Jr., and H. A. Farach, A review of spin
Hamiltonian forms for various point-group site symmetries, Appl.
Magn. Reson. 11, 29-46 (1996).



	INTRODUCTION
	GENERATION OF TENSOR OPERATORS T(k)(J)
	KINDS OF OPERATOR EQUIVALENTS
	TABLE 1

	MATRIX ELEMENTS OF OPERATOR EQUIVALENTS
	CONCLUSIONS
	REFERENCES

