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To find all components T6q
(k) 5 Nk,qJ6

q ¥m50
k2q (61)k2ma(k, q; m)Jz

m

0 < q < k) of an irreducible tensor operator of rank k, a recursion
ormula for the coefficients a(k, q; m) is derived. Various kinds of
perator equivalents and forms of their expression are examined.
atrix elements of operator equivalents are expressed through the

oefficients a(k, q; m). A table for the coefficients a(k, q; m) with
5 2, 4, and 6 is given. © 1999 Academic Press

Key Words: tensor operators; operator equivalents; matrix
lements.

INTRODUCTION

Operator equivalents play a fundamental role in magn
esonance (EPR, ENDOR, etc.), especially in the constru
f a symmetry-adapted spin Hamiltonian followed by the
ulation of the energy levels of paramagnetic ions in crys
oth Stevens operator equivalents and Racah operator e
lents are extensively used for this purpose (see, e.g., (1, 2) and
3, 4), respectively, and references therein). Actually the la
re the components (denoted here asT6q

(k) ) of the irreducible
ensor operator (5) T (k)(J) of an angular momentumJ 5 ( Jx,
y, Jz) and the former are linear combinations of the opera
q
(k) and T2q

(k) (see, e.g., (6) and the summary therein of t
ifferent notations for operator equivalents).
Until now several methods for generating operator equiva

ave been known. The best known originated from Steven7)
nd consists in replacing the space variablesx, y, andz, which
ppear in expressions for solid (spherical or tesseral) harm
ith the operatorsJx, Jy, andJz, respectively. Conversion fro
olid harmonics to operator equivalents can also be carried o
he “polarization” process (8). Another way is to apply Racah
5) commutation rule (see Eq. [1] below). Direct use of the ab
ethods is complicated with an increase of orderk by noncom
utation of the operatorsJx, Jy, andJz. In solving the problem o
enerating operator equivalents of high order some genera
ula or an elaborated algorithm might be very useful. The a
ble formulas (9–11) and algorithms (3, 4) seem to be much to
omplicated for application in practice. One of the purposes o
resent work is to give much simpler formulas for construc

perator equivalents as well as calculating their matrix elemen
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ents as well as forms of their expression.

GENERATION OF TENSOR OPERATORS T(k)(J)

The componentsT6q
(k) of an irreducible tensor operatorT (k)(J)

f orderk (0 # q # k) satisfy Racah’s commutation rule (5):

@ J7, T6q
~k! # 5 @~k 1 q!~k 2 q 1 1!# 1/ 2T6q71

~k! . [1]

he “6q” and “7q” components are related to one anot
y (5)

T6q
~k! †

5 ~21! qT7q
~k! . [2]

tarting from the “6k” componentT6k
(k) 5 Nk,6kJ6

k and using
q. [1] along with the standard commutation relations for
omponentsJ6 5 Jx 6 iJ y andJz of an angular momentu
(see, e.g., (12)), we obtain

T6q
~k! 5 Nk,6qJ6

q O
m50

k2q

a~k, 6q; m!Jz
m, [3]

here

Nk,q 5 ~21! k2qNk,kF ~k 1 q!!

~k 2 q!! ~2k!!G
1/ 2

, [4]

Nk,2q 5 ~21! kNk,q, [5]

k,k is a normalization factor (see the next paragraph), an

a~k, 2q; m! 5 ~21! ma~k, q; m!. [6]

quations [3], [5], and [6] result in

T6q
~k! 5 Nk,qJ6

q Ok2q

~61! k2ma~k, q; m!Jz
m. [7]
ts. m50

1090-7807/99 $30.00
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142 I. D. RYABOV
ll coefficientsa(k, q; m) are not equal to zero only ifq 1
# k; in particular whenq 5 k they area(k, k; 0) 5 1. The

q 2 1” coefficients are related to the “q” coefficients by a
ecursion formula:

a~k, q 2 1; m! 5 ~2q 1 m 2 1!a~k, q; m 2 1!

1 Fq~q 2 1! 2
m~m 1 1!

2 Ga~k, q; m!

1 O
n51

k2q2m

~21! nFSm 1 n
m DJ~ J 1 1!

2 Sm 1 n
m 2 1D 2 Sm 1 n

m 2 2DG
3 a~k, q; m 1 n!. [8]

n addition,

Nk,q21 5 2
Nk,q

@~k 1 q!~k 2 q 1 1!# 1/ 2 . [9]

he coefficientsa(k, q; m) can be considered as

a~k, q; m! 5 O
i50

@~k2q2m!/ 2#

@ J~ J 1 1!# ia~k, q; m, i !, [10]

here the fourth indexi is an integer power of the eigenva
f J2, the maximum fori being the integer part of the numb
k 2 q 2 m)/ 2. The algorithm, given in Eq. [8], is eas
rogrammed on a computer with the result that all compon
see Eq. [7]) of the tensor operatorT (k)(J) of order as high as
.g., 50 can be found. As an illustration, all coefficients ex

or Nk,k appropriate to the most common magnetic reson
rders,k 5 2, 4, and 6, are given in Table 1. The spec
alues ofNk,k are determined by a concrete kind of ten
perator (see below).

KINDS OF OPERATOR EQUIVALENTS

The operatorsT6q
(k) defined in Eq. [7] are the direct equiv

ents of solid harmonics

r kC6q
~k! ; r kS 4p

2k 1 1D
1/ 2

Y6q
~k! , [11]

here Y6q
(k) are the usual spherical harmonics andC6q

(k) are
acah’s harmonics (5), if we put in Eq. [4]

Nk,k 5
~21! k@~2k!! # 1/ 2

k . [12]

2 k! o
ts

pt
ce

r

he operator equivalents with such normalization are tradi
lly expressed (see, e.g., (4, 13–15)) through anti-commutato
J6

q , Pk2q( Jz)} [ J6
q Pk2q 1 Pk2qJ6

q , i.e.,

T6q
~k! 5 ~61! qNk,q$ J6

q , Pk2q~ Jz!%, [13]

here we introduce the designationPk2q( Jz) for a polynomia

TABLE 1
The Coefficients Appropriate to the Racah and Stevens Operator

Equivalents Defined in Eqs. [7] and [23] with k 5 2, 4, and 6

k q Nk,q/Nk,k m a(k, q; m)/Fk,q Fk,q

0 621/2/2 0 2X 4
2 3

1 21
2 0 1 2

1 2
2 1 0 1 1

0 7021/2/24 0 23X(2 2 X) 48
2 5(5 2 6X)
4 35

1 21421/2/12 0 3(2 2 X) 24
1 19 2 6X
2 21
3 14

2 721/2/4 0 9 2 X 8
1 14
2 7

3 2221/2/2 0 3 4
1 2

4 1 0 1 1

0 23121/2/1440 0 25X(12 2 8X 1 X2) 2880
2 21(14 2 25X 1 5X2)
4 105(7 2 3X)
6 231

1 22221/2/720 0 5(12 2 8X 1 X2) 1440
1 2(117 2 55X 1 5X2)
2 15(25 2 6X)
3 60(6 2 X)
4 165
5 66

2 5521/2/72 0 1202 26X 1 X2 360
1 6(47 2 6X)
2 3(91 2 6X)
3 132
4 33

3 25521/2/12 0 3(402 3X) 60
1 179 2 6X
2 99
3 22

4 6621/2/2 0 50 2 X 12
1 44
2 11

5 2321/2/2 0 5 6
1 2

6 1 0 1 1

Note. X5 J( J 1 1); Fk,q are multiplying factors.
f orderk 2 q in the variableJz having ordersk 2 q, k 2 q 2
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143GENERATION OF OPERATOR EQUIVALENTS
, . . . $ 0. We found that each pair of those operators can
e expressed as the sum/difference of another anti-comm
J6

q , P9 k2q( Jz)} Þ { J6
q , Pk2q( Jz)} and commutator [J6

q ,
k2q21( Jz)] [ J6

q Pk2q21 2 Pk2q21J6
q ,

T6q
~k! 5 ~61! qNk,q~$ J6

q , P9 k2q~ Jz!% 6 @ J6
q , Pk2q21~ Jz!#!,

[14]

here in a polynomial of orderk 2 q 2 1 the variableJz has
rdersk 2 q 2 1, k 2 q 2 3, . . .. 0. In addition, forq Þ
the alternative form is

T6q
~k! 5 ~61! q11Nk,q@ J6

q , Pk2q11~ Jz!#; [15]

ere orders ofJz are k 2 q 1 1, k 2 q 2 1, . . .. 0. All
hese forms, Eqs. [13]–[15], can be reduced to Eq. [7] with
elp of the relation

Jz
pJ6

q 5 J6
q ~ Jz 6 q! p 5 J6

q O
m50

p

~61! mS p
mDqmJz

p2m. [16]

or example, for the componentT61
(6) Eqs. [13]–[15] give

T61
~6! 5 6N6,1F6,1$ J6, 33Jz

5 2 ~30X 2 15!Jz
3

1 ~5X2 2 10X 1 12!Jz%, [139]

T61
~6! 5 N6,1F6,1S6HJ6, 33Jz

5 2 ~30X 2 75!Jz
3

1 S5X2 2
35

2
X 1 12DJzJ

1 FJ6, 30Jz
4 2 S15

2
X 2 30DJz

2GD , [149]

T61
~6! 5 N6,1F6,1@ J6, 211Jz

6 1 ~15X 2 35!Jz
4

2 ~5X2 2 25X 1 14!Jz
2#, [159]

here F 6,1 5 1440 andX 5 J( J 1 1). But all these ar
educed to the following (cf. Table 1):

T61
~6! 5 N6,1F6,1J6@666Jz

5 1 165Jz
4 6 60~2X 1 6!Jz

3

1 15~26X 1 25!Jz
2 6 2~5X2 2 55X 1 117!Jz

1 5~X2 2 8X 1 12!#. [79]

Introducing

Nk,k 5
~21! k

k/ 2 [17]

2

o
tor

e

n Eq. [4], we obtain from Eq. [7] the operator equivalents
ef. (3)) commonly used in constructing a generalized
amiltonian (16).
In the case

Nk,k 5
~21! k

k! F ~2k!! ~2J 2 k!!

~2J 1 k 1 1!! G
1/ 2

[18]

e get Racah’s (5) unit tensor operators, for which the reduc
atrix elements are

^J\T ~k!\J& 5 1. [19]

his result (cf. Eq. [29] below) follows from the Wigne
ckart theorem (17) (see Eq. [28]). The normalization, whi

s similar to Eq. [18] but includes an additional factor (2k 1
)1/ 2, gives (18)

^J\T ~k!\J& 5 ~2k 1 1! 1/ 2. [20]

he normalizationNk,k 5 1 (12) and others (see, e.g., t
ormalization of the operatorsT6q

(2) in Ref. (19)) are also used
The operator equivalents to the cosine and sine tes

armonics are linear combinations of the appropriate te
perators of a spherical type, viz.,

Ok
q~c! 5

ck,q

2
@Tq

~k! 1 Tq
~k! †

#,

Ok
q~s! 5

ck,q

2i
@Tq

~k! 2 Tq
~k! †

#, [21]

hereck,q is a multiplying coefficient. In particular, the conve
ional Stevens operator equivalents are obtained with the u

ck,q 5
a

Nk,qFk,q
, [22]

hereFk,q is the largest common factor for the natural numb
(k, q; m, i ) (see Eq. [10]) with givenk andq (see the value
f Fk,q for k 5 2, 4, and 6 in Table 1);a 5 1 for all q if k is
n odd integer but ifk is even, thena 5 1 or a 5 1

2 for even
nd oddq, respectively. Thus, for the conventional Stev
perator equivalents from Eqs. [2], [7], [21], and [22] we

Ok
q~c! ; Ok

q 5
a

2Fk,q
O

m50

k2q

a~k, q; m!

3 @ J1
q 1 ~21! k2q2mJ2

q #Jz
m,

Ok
q~s! 5

a

2iF k,q
O

m50

k2q

a~k, q; m!

q k2q2m q m
3 @ J1 2 ~21! J2#Jz . [23]
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144 I. D. RYABOV
he above-stated double valuea can apparently be explain
s follows. When constructing the operatorsOk

q(c) andOk
q(s)

ith Eq. [21] the tensor operatorsT6q
(k) are usually used in

orm similar to Eq. [13]. Then for the Stevens operators w
venk the common factorsF9k,q 5 Fk,q/a appear in polyno
ials Pk2q( Jz), i.e.,

Ok
q 5

1

2F9k,q
$ J1

q 1 J2
q , Pk2q~ Jz!%, [24]

ach factorF9k,q being just the same that would appear
onstructing the solid harmonics (see Eq. [11]). In the cas
dd k the multiplying factorsF9k,q 5 Fk,q are conventionall
hosen as the common ones for the corresponding polyno
n the solid harmonics rather than for the polynom

k2q( Jz). As a consequence of this trick fractional numb
ccur in the appropriate anti-commutators (see, e.g., the li
acah and Stevens operator equivalents in Refs. (14, 15) and

2, 21), respectively; the list in Ref. (21), however, is found t
ontain a number of errors). By the way, following Ref. (11),
e note that terms of order lower thank in Eq. [7] (bearing in
ind orders in Eq. [10]) are to be ignored when performing

eciprocal conversion from the operator equivalents to the
armonics. From the above it can be concluded that in
onstruction of the Hermitian operatorsOk

q(c) andOk
q(s) other

alues of the coefficientsck,q in Eq. [21] would be desirable
rder to exclude any dependence on the form of expressi

he tensor operatorsT6q
(k) . The valueck,q 5 1 seems to be qui

uitable.

MATRIX ELEMENTS OF OPERATOR EQUIVALENTS

Knowing that

JzuJ, M& 5 MuJ, M&

nd

J6uJ, M& 5 @~ J 7 M!~ J 6 M 1 1!# 1/ 2uJ, M 6 1&, [25]

e get from Eq. [7]

^J, M 6 quT6q
~k! uJ, M& 5 Nk,qF ~ J 7 M!! ~ J 6 M 1 q!!

~ J 6 M!! ~ J 7 M 2 q!!G
1/ 2

3 O
m50

k2q

~61! k2mM ma~k, q; m!

[26]

ith the restrictions 0# q # k # 2J and2J # M 6 q #

. For example, using Eqs. [4] and [26] as well as Table 1r
of

als

s
of

e
id
e

of

ables (see Ref. (20)) of matrix elements of Racah opera
quivalents with normalization from Eq. [12] can be ea
eproduced fork 5 2, 4, and 6. For the practically importa
tevens operator equivalents, Eqs. [23], we analogously o

^J, M9uOk
q~c!uJ, M& 5

a

2Fk,q
O

m50

k2q

3 HdM9,M1qF ~ J 2 M!! ~ J 1 M 1 q!!

~ J 1 M!! ~ J 2 M 2 q!!G
1/ 2

1 dM9,M2q~21! k2q2mF ~ J 1 M!! ~ J 2 M 1 q!!

~ J 2 M!! ~ J 1 M 2 q!!G
1/ 2J

3 M ma~k, q; m! [27]

nd a similar formula forOk
q(s), in which an additional mu

iplier (2i ) is to appear and the sign in front of (21)k2q2m is
o be changed into the opposite. With Eq. [27] some misp
n the available tables of matrix elements of Stevens ope
quivalents (see, e.g., the Russian edition of books (1, 2)) can
ome to light.
According to the Wigner–Eckart theorem (17), matrix ele-
ents of irreducible tensor operatorsT (k)(J) are

^J, M 6 quT6q
~k! uJ, M&

5 ~21! J2M7qS J k J
2M 7 q 6q MD ^J\T ~k!\J&. [28]

uttingq 5 k and comparing the right-hand sides in Eqs. [
nd [28], we get

^J\T ~k!\J& 5 ~21! kNk,kk!F ~2J 1 k 1 1!!

~2k!! ~2J 2 k!!G
1/ 2

. [29]

he special cases of Eq. [29] appropriate to the normaliza
n Eqs. [12], [17], and [18] have been considered in R
14, 15), (3), and (11), respectively.

CONCLUSIONS

The new formulas given in this work, viz., Eqs. [4], [7]–[1
23], [26], and [27], constitute the closed and easily reprod
lgorithm of constructing quickly both the Racah and
tevens operator equivalents (T6q

(k) andOk
q(c), Ok

q(s)) with any
reasonably high) integer orderk and any normalization, suc
s in Eqs. [12], [17], [18], or any other, as well as of calcula

heir matrix elements (within anyJ 5 constant) without an
eference to the special tables. The available tables quite
ontain annoying misprints and our formulas could be usef

,evealing these.



1

1

1

1

1

1

1

1

1

1

2

2

145GENERATION OF OPERATOR EQUIVALENTS
REFERENCES

1. A. Abragam and B. Bleaney, “Electron Paramagnetic Resonance of
Transition Ions,” Clarendon, Oxford (1970).

2. S. A. Al’tshuler and B. M. Kozyrev, “Electron Paramagnetic Reso-
nance in Compounds of Transition Elements,” Wiley, New York
(1974).

3. H. A. Buckmaster, R. Chatterjee, and Y. H. Shing, The application
of tensor operators in the analysis of EPR and ENDOR spectra,
Phys. Status Solidi A 13, 9–50 (1972).

4. S. A. Marshall, T. Marshall, and H. A. Buckmaster, Angular momen-
tum operator equivalents, Magn. Reson. Rev. 14, 81–98 (1988).

5. G. Racah, Theory of complex spectra. II, Phys. Rev. 62, 438–462
(1942).

6. C. Rudowicz, Transformation relations for the conventional Ok
q and

normalised Ok
9q Stevens operator equivalents with k 5 1 to 6 and

2k # q # k, J. Phys. C 18, 1415–1430 (1985).

7. K. W. H. Stevens, Matrix elements and operator equivalents con-
nected with the magnetic properties of rare earth ions, Proc. Phys.
Soc. A 65, 209–215 (1952).

8. M. E. Rose, “Elementary Theory of Angular Momentum,” Wiley,
New York (1957).

9. J. M. Caola, Operator equivalents in closed form, Phys. Lett. A 47,
357–358 (1974).

0. A. K. Bose, Operator equivalents without the use of Clebsch–
Gordan coefficients, Phys. Lett. A 50, 425–426 (1975).
1. G. Grenet and M. Kibler, On the operator equivalents, Phys. Lett. A
68, 147–150 (1978); M. Kibler and G. Grenet, On the SU2 unit
tensor, J. Math. Phys. 21, 422–439 (1980).

2. J. P. Elliott and P. G. Dawber, “Symmetry in Physics,” Macmillan,
London (1979).

3. H. A. Buckmaster, Tables of matrix elements for the operators O 2
61,

O 4
61, O 6

61, O 6
65, Canad. J. Phys. 40, 1670–1677 (1962).

4. D. Smith and J. H. M. Thornley, The use of ‘operator equivalents,’
Proc. Phys. Soc. 89, 779–781 (1966).

5. P.-A. Lindgård and O. Danielsen, Bose-operator expansions of
tensor operators in the theory of magnetism, J. Phys. C 7, 1523–
1535 (1974).

6. G. F. Koster and H. Statz, Method of treating Zeeman splittings of
paramagnetic ions in crystalline fields, Phys. Rev. 113, 445–454
(1959).

7. A. R. Edmonds, “Angular Momentum in Quantum Mechanics,”
Princeton Univ. Press, Princeton, NJ (1957).

8. E. Ambler, J. C. Eisenstein, and J. F. Schooley, Traces of products
of angular momentum matrices, J. Math. Phys. 3, 118–130 (1962).

9. C. Kikuchi and L. M. Matarrese, Paramagnetic-resonance absorp-
tion of ions with spin 5

2: Mn11 in calcite, J. Chem. Phys. 33, 601–606
(1960).

0. R. J. Birgeneau, Tables of matrix elements of Racah operator
equivalents, Can. J. Phys. 45, 3761–3771 (1967).

1. S. K. Misra, C. P. Poole, Jr., and H. A. Farach, A review of spin
Hamiltonian forms for various point-group site symmetries, Appl.

Magn. Reson. 11, 29–46 (1996).


	INTRODUCTION
	GENERATION OF TENSOR OPERATORS T(k)(J)
	KINDS OF OPERATOR EQUIVALENTS
	TABLE 1

	MATRIX ELEMENTS OF OPERATOR EQUIVALENTS
	CONCLUSIONS
	REFERENCES

